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On bilinear forms in Gaussian random variables, Toeplitz

matrices and Parseval's relation

FLORIN AVRAM

University of North Carolina
Center for Stochastic Processes

and
Purdue University

Mathematics Department

Abstract. We improve a result of Szeg5 on the asympototic behaviour of
the trace of products of Toeplitz matrices.

As an application, we improve also his result on the limiting behaviour of
the bilinear forms Bn = z: a,_jXX j,

i,j=1 -

where Xi is a stationary Gaussian sequence. A large deviations result is derived
as well.

1. Statement of Results

A. We study below the asymptotic behaviour of bilinear forms

(1.1) B, = ajx,
t,j"- 1

where X, is a mean zero stationary Gaussian sequence.

This problem was first studied in the book of Grenander and Szeg6, "Toeplitz ma-

trices and their applications" (1958), as an application of their theory of the asymptotic

behaviour of the trace of products of Toeplitz matrices.

Recently, there has been a renewed interest in this problem. See Fox and Taqqu (1983)

and (1986) and Taniguchi (1986).

In Theorem 1 below we improve the results of Grenander and Szeg5 on the asymptotics

of the trace of products of Toeplitz matrices. This theorem can be viewed also as a

generalization of Parseval's relation. As a corollary of Theorem 1, we get a result which

Keywords and Phrases: Toeplitz matrices, trace, singular values, cumulants, large deviations.
A.M.S. 1980 Subject Classifications: Primary, 60F05; Secondary, 6OF10.
This research supported by the Air Force Office of Scientific Research Contract No. F49620 85C 0144.
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improves Theorem 11.6 of Grenander and Szeg5 on the bilinear forms Bn (See Theorem

2).

The proof of Theorem 1 is based on a norm inequality (See Theorem 3), communicated

to us by Professor Larry Brown.

In a different direction, we establish a large deviations result about B, (See Theorem

4).

B. Let:

(1.2) r, = EXcX,+

denote the covariance of the sequence X,. The key fact about the bilinear form B, is that

its cumulants are:

(1.3) cumk(B) 2 k-l(k - 1)!Tr(AR, )k'

where An, R, are the n x n Toeplitz matrices:

An(i,j) ai-j, Rn(iij) r,_1 , for i,j- 1....,n

(Formula 1.3) is an easy application of the "diagram" formula; see Rosenblatt (19S5,

Theorem 2.2)).

The first step in studying B, should be thus the investigation of the asymptotic

behaviour of the trace of products of Toeplitz matrices.

Let Fn 1,..., be n x n Toeplitz matrices of the form

-
( ,J )  f). for i,j = 1,... ,n and v = 1,.. s,

and suppose f(+') are the Fourier coefficients of the real, even functions f( )(x), i.e.:

(1.4) (x)dx,

2
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THEOREM 1. Suppose that ....-.-
Ac cr i

N TI

f (x) EpL, 1 <_p_; 1 -

a) ifZ.<(pv) - ' 1, then

ir.

(1.5) n 1rr ) ()zlx ,
-im Tr( Ti F')) (2 7r fJx)Jd

N -L'=1 v=l .

b) ifa > 1, and a i=(pv) -', then A
. ,

1 * INSPrCT~fl

(1.6) Jrn Tr( J7 J-(,))  0
1/=1-

Remarks: 1) Formula 1.5 was first obtained by Grenander and Szez6 (1958), 7.4,

- under the assumption that f(V)(x) are bounded.

2) Theorem la is also a generalization of the classical Parseval relation. Indeed, it is

shown in the Appendix that the L.H.S. of 1.5 can also be written as the Caesaro sums:

(1.7) 1Tr( Fn )= A  
_ 

''' + n
_

V=1

N'

where Ak are the "skew" convolution sums:

(1.8) Ak - Ej f, (')

V, +...+v.=O

and

4D% = {(,,. v,): max vi- min vi < k}."-'" ' 1<3. < l < --

Thus, Theorem la asserts the Cesaro convergence of the "skew" convolution sums.

3
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Note also that the "usual" convolution sums,

__: f; 1) 3f)

%%: (p, <.. +1, an=o<p <

converge to the R.H.S. of 1.5, if f (v)(z) E Lp, ,= 1 (pv) - < 1, and 1 < p, < cc.

since then the Fourier sums of f(v) (x) converge in Lp. sense, and the scalar product is

continuous. In this case, taking Cesaro sums is unnecessary. If, however, some pv equal I

or oc, and ,=(pv) - = 1, we do not know whether B,, converge to the R.H.S. of (1.5)

in Cesaro sense. However, for n = 2 and 3, C,, = D,,, and in the case n = 2 we have the

classical Parseval relation (See Katznelson, (1968), pg. 35).

As an immediate corollary of Theorem 1 we get:

THEOREM 2. Let ak and rk in 1.1) and 1.2) be the Fourier coefficients of the rea..

even functions a(x) and r(x), and suppose a(x) E Lp,, r(x) G Lp2 , 1 < pi, P2 < oc and

(1.9) (pO)- + (p2) - ' < 2-1.

"'" Then,
.:.-.

(1.10) + - N(0, o 2 ),

where

a 2(27r)" a2()r (x)dx.

Proof: Use the method of cumulants:

("0 for k =1

cumk( ) = 2 T(AfRn for k =2

*. 2 -(k - 1)!Tr'(A-ARn) for k > 3

.- 0 for k 1

2. (27r)" fa 2 (x)r 2 (x)dx for k = 2, by Theorem la1. 0 for k > 3, By Theorem lb

4
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Notes: 1) 1.10 was first established by Grenander and Szeg6 (1958, Thm. 11.6), under

the assumption that a(x) and r(x) are bounded.

2) Taqqu and Fox (1983) extended the result of Grenander and Szeg6 under a set

of assumption different from ours. They show that if a(x) and r(x) are continuous, ex-

cept maybe at 0, and are regularly varying at 0, then a(x)r(x) E L2 (which is a weaker

assumption than 1.9) is sufficient for 1.10 to hold.

C. Theorem 1 follows from the following inequality, communicated to us by Larry

Brown:

THEOREM 3. For 1_< p <oc,

(1.11) IF,,1p < nl/Prf(X)Ilp,

where "F,11 ( s_,,__P)liv, s1, being the singular values of the matrix F,.

(1.11) can be first established for p 2, oc and 1. By the Riesz convexity theorem. it

follows then that it holds for every p.

D. We see from Theorem la that when a(x) and r(x) are bounded, the cumulants

of B,, increase all at the same asymptotic rate (cumk(B,) = 0(n)). In such cases, large

deviations results hold. We get, by applying Lemma 1 of Cox and Griffeath (1985), the

following:

THEOREM 4. Suppose a(x) and r(x) are even, real functions, which are Riemann

integrable. Let L = 47r sup a(x) .sup r(x), and sc(s) = - f'_ In(1 - 47rsa(x)r(x))dx, for

any s E (-o,L 1 ). Then,

a) for any a C (p'(0), lim o'(s))
81L

1 'B-
lim -Pr{B > a} -I(a)

n -o0 f n

b) for any a E ( Jim 0'(s), o'(0))
8---* -00O

-imPr{-! <a}=-()
n-o nO n

5
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where I(a) = as,, - p(s,) and s,. is the unique solution of '(sQ) = a.

2. Proofs

Proof of Theorem 1: a) Let m be the number of f( ) which are non-polynomials (have

infinitely many non zero Fourier coefficients). We will use induction on m. For m =0 (i.e.

all f(M)(x) are polynomials), it is easy to check that (1.5) holds. Suppose now (1.5) holds 7

whenever we have at most m non-polynomials.

Consider then any set of f (')(x) which has at most m+1 non-polynomials, and suppose

w.l.o.g. that f(1)(x) is a non-polynomial. Let then f (1) (x) denote the kth Fejer sum of

.(1)(x), let f(1),k(X) = f(1)(x)- f ()(x), and let F'(,),k and FP ),k be the corresponding

Toeplitz matrices. Then

* 18
(2.1) lim -Tr(F)l FM) = / f (x) (2 7 f ((x))dx

v-.oo L-=22

by the induction hypothesis, and the R.H.S. of (2.1) converges as k oc to

f2, 1-=I(27rf(v)(x))dx since 1 < p, < oo implies that -If
( l) 0, and

H1= 2 f(L/)(x) E L,,, where (pl)-1 + (qz) 1 < 1. To show then that (1.5) holds with up

to m 1 non-polynomials it remains only to note that:

< lim lim IJF( ),k1j F(v)I
k-oo n-oo n n

v= 2
< lim m J I(lljlij, 1- IjF )iI

1€-,,o n-oo n nnP

v=2

k-oo n-oo n1k

-0. v=2=0. F

b) Assume first w.l.o.g. s=(p,)- > 1. (Otherwise the result follows from a)).

6
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The proof is now similar with that of part a). If all f )(x) are polynomials, the limit

is 0 since a > 1. Otherwise, if say, f(0)(x) is a nonpolynomial, replace f(1) by f( .f(l)

Finally, let 0 = Z:=(p,)-1 and note that

1 58

a -'-ITr ( F ("I) K IIjFnl),k Ti i.(v)
n4k n nc

A - nlF]lF )'kfliv II IlF-()h(since 0 > 1)
--4 n

v=22

K fX 1 1 1 l f L ema (by Theorem 3)
v=2

k-c
v=2

Proof of Theorem 4: This is a straightforward application of Lemma I of Cox and

*. Griffeath (1985). We need only to check that for any s E (-oc,L-'), the cumulant

generating function:

log Ee B - satisfies:

7 fr

(2.2) lim , (s) = - - 47rsa(z)r(x))dx.
n-oc 2

But ,n(s) equals:

n(s)n ( - 2sA,,,),=2

where Ai,n are the eigenvalues of An, Rt, for any s < [Max 2Ai,,l - (Direct computation).

(2.2) follows now Theorem 4.4 ii of Gray(1971), since a(x), r(x) are Riemann in-

A tegrable, and the function tn(1 - 4irsz) is continuous for z E (-oc, -), if s < L- 1.

Note: The assumption of Riemannian integrability is probably too strong. We follow

however Gray in adopting it, due to the conceptual simplicity which it brings to the

problem. (Under this assumption, the Toeplitz matrices are asymptotically equivalent

7
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with circulant approximands, which are much easier to manipulate. This approach is

nicely illustrated in Gray (1971)).

Acknowledgement: We thank Professor Larry Brown for communicating to us Theo-
-p,,..

rein 3.

Appendix

Proof of formula 1.7: Let

C,= {...

let T(jl.... ,3") denote the range of sums Ek J,, i.e.

k k

T(j3 ,...,ja) = J- Min ZJ"
".'.." <k~ e l<k<s

let

D {(j .  .J) : 3 = 0, T(.. . , ) < n},

and let A, be the "skew" convolution sums:

Then,

* T(JF,(V) _ E.~ f(1 ) 2 )~
nT r( i S1- 2 i - 3 . . .

V=1 1EC)

1= 1 (a)

(A.) _ 4() f) Z
• ' ( . )- .- " "I .\

• . _ 1~~~Z~ y .T , 1... J,.'-TVl ,..,i,)
...:. - 1:. (n

The last equality holds since the set of all i's with given 3 differences can be obtained

from any of its elements f(o), by adding or subtracting (1,..., 1) as long as all components

" "-" 8
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aein terange {1 n}; as such, it has (-Hd. max (0)

-4~~~i th'hs0)o) 
elements. Furthermore,

maI LI I

mi -'0 max(- '0 ))- - min( ~ -0

L/ L

I: ma(Jk) - min(Z k~)

k=1 k=1

=T(ji,. .. ,

Final1ly, from (A.1) we get

an-I n-1

!T(flL )l f nA 
n EZAk.

k=u ;EDj k=

.Il
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